login
A371732
Numbers n such that each binary index k (from row n of A048793) has the same sum of binary indices A029931(k).
0
1, 2, 4, 8, 12, 16, 32, 64, 128, 144, 256, 288, 512, 576, 1024, 2048, 3072, 4096, 8192, 16384, 32768, 32800, 33024, 33056, 65536, 65600, 66048, 66112, 131072, 132096, 133120, 134144, 262144, 266240, 524288, 528384, 786432, 790528, 1048576, 1056768, 2097152
OFFSET
1,2
EXAMPLE
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
12: 1100 ~ {3,4}
16: 10000 ~ {5}
32: 100000 ~ {6}
64: 1000000 ~ {7}
128: 10000000 ~ {8}
144: 10010000 ~ {5,8}
256: 100000000 ~ {9}
288: 100100000 ~ {6,9}
512: 1000000000 ~ {10}
576: 1001000000 ~ {7,10}
1024: 10000000000 ~ {11}
2048: 100000000000 ~ {12}
3072: 110000000000 ~ {11,12}
4096: 1000000000000 ~ {13}
8192: 10000000000000 ~ {14}
16384: 100000000000000 ~ {15}
32768: 1000000000000000 ~ {16}
32800: 1000000000100000 ~ {6,16}
MATHEMATICA
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[1000], SameQ@@Total/@bix/@bix[#]&]
CROSSREFS
For prime instead of binary indices we have A326534.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A321142 and A371794 count non-biquanimous strict partitions.
A321452 counts quanimous partitions, ranks A321454.
A326031 gives weight of the set-system with BII-number n.
A357976 ranks the biquanimous partitions counted by A002219 aerated.
A371731 ranks the non-biquanimous partitions counted by A371795, A006827.
Sequence in context: A266047 A375599 A324214 * A368507 A273109 A046843
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Apr 13 2024
STATUS
approved