login
A320324
Numbers of which each prime index has the same number of prime factors, counted with multiplicity.
33
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 85, 89, 91, 93, 97, 99, 101, 103, 107, 109, 113, 121, 123, 125, 127, 128, 131, 135, 137, 139, 149, 151, 153
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n.
EXAMPLE
The terms together with their corresponding multiset multisystems (A302242):
1: {}
2: {{}}
3: {{1}}
4: {{},{}}
5: {{2}}
7: {{1,1}}
8: {{},{},{}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
33: {{1},{3}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
45: {{1},{1},{2}}
47: {{2,3}}
49: {{1,1},{1,1}}
MATHEMATICA
Select[Range[100], SameQ@@PrimeOmega/@PrimePi/@First/@FactorInteger[#]&]
PROG
(PARI) is(n) = #Set(apply(p -> bigomega(primepi(p)), factor(n)[, 1]~))<=1 \\ Rémy Sigrist, Oct 11 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 10 2018
STATUS
approved