login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369006
a(n) = 1 if there is no prime p such that p^p divides n' / gcd(n,n'), and 0 otherwise, where n' stands for the arithmetic derivative of n, A003415(n).
2
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1
OFFSET
1
COMMENTS
Question: Is there a formula for the asymptotic mean, which seems to be around 0.813...? Consider A369004 and A369007.
FORMULA
a(1) = 0, for n > 1, a(n) = A359550(A083345(n)).
A368914(n) <= a(n) <= 1 - A369004(n).
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A369006(n) = if(1==n, 0, A359550(A083345(n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 14 2024
STATUS
approved