login
A368909
a(n) = A003415(sigma(A005940(1+n))) mod 2, where A003415 is the arithmetic derivative, sigma is the sum of divisors function, and A005940 is the Doudna sequence.
2
0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
0
FORMULA
a(n) = A347870(A005940(1+n)).
a(n) = A165560(A324054(n)) = A003415(A324054(n)) mod 2.
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A368909(n) = (A003415(sigma(A005940(1+n)))%2);
CROSSREFS
Sequence in context: A117872 A291291 A324681 * A285249 A269027 A089809
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 11 2024
STATUS
approved