login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368905
a(n) = 1 if A342001(A005940(1+n)) is not divisible by p^p for any prime p, otherwise 0.
4
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1
OFFSET
0
FORMULA
a(0) = 0, and for n > 0, a(n) = A359550(A366801(n)) = A368914(A005940(1+n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A342001(n) = (A003415(n) / A003557(n));
A366801(n) = A342001(A005940(1+n));
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
A368905(n) = if(!n, 0, A359550(A366801(n)));
CROSSREFS
Cf. also A368907, A368916.
Sequence in context: A252372 A168182 A204447 * A188642 A168046 A168184
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 11 2024
STATUS
approved