login
A367904
Number of sets of nonempty subsets of {1..n} with only one possible way to choose a sequence of different vertices of each edge.
33
1, 2, 6, 38, 666, 32282, 3965886, 1165884638, 792920124786, 1220537093266802, 4187268805038970806, 31649452354183112810198, 522319168680465054600480906, 18683388426164284818805590810122, 1439689660962836496648920949576152046, 237746858936806624825195458794266076911118
OFFSET
0,2
LINKS
FORMULA
a(n) = A367902(n) - A367772(n). - Christian Sievers, Jul 26 2024
Binomial transform of A003024. - Christian Sievers, Aug 12 2024
EXAMPLE
The set-system Y = {{1},{1,2},{2,3}} has choices (1,1,2), (1,1,3), (1,2,2), (1,2,3), of which only (1,2,3) has all different elements, so Y is counted under a(3).
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]==1&]], {n, 0, 3}]
CROSSREFS
The maximal case (n subsets) is A003024.
The version for at least one choice is A367902.
The version for no choices is A367903, no singletons A367769, ranks A367907.
These set-systems have ranks A367908, nonzero A367906.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.
Sequence in context: A005738 A055704 A005740 * A006536 A057297 A005530
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2023
EXTENSIONS
a(5)-a(8) from Christian Sievers, Jul 26 2024
More terms from Christian Sievers, Aug 12 2024
STATUS
approved