login
A368540
The smallest unitary divisor d of n such that n/d is a term of A138302.
1
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 125, 1, 1
OFFSET
1,8
COMMENTS
First differs from A368167 at n = 64 and from A367513 at n = 128.
LINKS
FORMULA
a(n) = n / A367168(n).
Multiplicative with a(p^e) = p^(e-A048298(e)).
a(n) >= 1, with equality if and only if n is in A138302.
MATHEMATICA
f[p_, e_] := If[e == 2^IntegerExponent[e, 2], 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), 1, f[i, 1]^f[i, 2])); }
(Python)
from math import prod
from sympy import factorint
def A368540(n): return prod(p**e for p, e in factorint(n).items() if not e or (e&-e)^e) # Chai Wah Wu, Dec 30 2023
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Dec 29 2023
STATUS
approved