OFFSET
0,5
COMMENTS
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
EXAMPLE
Triangle begins:
1
1 1
1 2
1 3 1
1 3 3
1 5 3 2
1 4 7 2 1
1 6 7 6 2
1 6 10 6 7
1 7 12 11 8 3
1 6 16 11 17 3 2
1 10 14 20 19 10 2 1
1 7 22 17 31 14 7 2
1 9 22 27 37 22 11 6
1 10 24 27 51 32 16 15
1 11 27 39 57 43 27 22 4
1 9 33 34 79 57 36 39 7 2
1 13 31 51 86 77 45 62 14 4 1
Row n = 9 counts the following partitions:
(9) (81) (711) (621) (5211)
(72) (6111) (531) (4311)
(63) (522) (432) (4221)
(54) (51111) (33111) (42111)
(333) (441) (222111) (3321)
(111111111) (411111) (2211111) (32211)
(3222) (321111)
(3111111)
(22221)
(21111111)
MATHEMATICA
DeleteCases[Table[Length[Select[IntegerPartitions[n], Length[Union[Total/@Subsets[#, {2}]]]==k&]], {n, 10}, {k, 0, n}], 0, 2]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 19 2023
STATUS
approved