OFFSET
0,9
COMMENTS
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
EXAMPLE
The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is counted under a(7).
The a(7) = 1 through a(13) = 10 partitions:
(4,2,1) (4,3,1) (5,3,1) (5,3,2) (5,4,2) (6,4,2) (6,4,3)
(5,2,1) (6,2,1) (5,4,1) (6,3,2) (6,5,1) (6,5,2)
(6,3,1) (6,4,1) (7,3,2) (7,4,2)
(7,2,1) (7,3,1) (7,4,1) (7,5,1)
(8,2,1) (8,3,1) (8,3,2)
(9,2,1) (8,4,1)
(5,4,2,1) (9,3,1)
(6,3,2,1) (10,2,1)
(6,4,2,1)
(7,3,2,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#, {2}]; If[d=={}, {}, Range[Min@@d, Max@@d]]!=Union[d])&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 17 2023
STATUS
approved