login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364491
a(n) = n / gcd(n, A163511(n)).
8
0, 1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 7, 11, 23, 1, 5, 13, 27, 7, 29, 15, 31, 1, 11, 17, 7, 1, 37, 19, 39, 5, 41, 7, 43, 11, 15, 23, 47, 1, 49, 5, 51, 13, 53, 27, 5, 7, 19, 29, 59, 15, 61, 31, 63, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37, 15, 19, 11, 39, 79, 5, 3, 41, 83, 7, 17, 43, 87
OFFSET
0,6
COMMENTS
Numerator of n / A163511(n).
LINKS
FORMULA
a(n) = n / A364255(n) = n / gcd(n, A163511(n)).
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429
A163511(n) = if(!n, 1, A005940(1+A054429(n)))
A364491(n) = (n/gcd(n, A163511(n)));
(Python)
from math import gcd
from sympy import nextprime
def A364491(n):
c, p, k = 1, 1, n
while k:
c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
k >>= s+1
return n//gcd(c*p, n) # Chai Wah Wu, Jul 26 2023
CROSSREFS
Cf. A163511, A364255, A364492 (denominators), A364493, A364494 (positions of 1's).
Sequence in context: A065330 A140215 A366284 * A190643 A068328 A342918
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Jul 26 2023
STATUS
approved