OFFSET
0,10
COMMENTS
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
EXAMPLE
The a(n) partitions for n = 6, 9, 12, 15, 18:
(3,2,1) (4,3,2) (5,4,3) (6,5,4) (7,6,5)
(5,3,1) (6,4,2) (7,5,3) (8,6,4)
(7,4,1) (8,5,2) (9,6,3)
(6,3,2,1) (9,5,1) (10,6,2)
(3,3,2,2,1,1) (4,4,3,3,1) (11,6,1)
(5,3,3,2,2) (4,4,3,3,2,2)
(5,4,3,2,1) (5,5,3,3,1,1)
(7,3,3,1,1) (6,4,3,3,1,1)
(7,3,3,2,2,1)
(8,3,3,2,1,1)
(3,3,3,2,2,2,1,1,1)
(6,2,2,2,2,1,1,1,1)
MATHEMATICA
modes[ms_]:=Select[Union[ms], Count[ms, #]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n], MemberQ[modes[#], Mean[#]]&&!{Mean[#]}==modes[#]&]], {n, 30}]
CROSSREFS
For any number of modes we have A363724.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 24 2023
STATUS
approved