login
A237984
Number of partitions of n whose mean is a part.
90
1, 2, 2, 3, 2, 5, 2, 6, 5, 8, 2, 21, 2, 14, 22, 30, 2, 61, 2, 86, 67, 45, 2, 283, 66, 80, 197, 340, 2, 766, 2, 663, 543, 234, 703, 2532, 2, 388, 1395, 4029, 2, 4688, 2, 4476, 7032, 1005, 2, 17883, 2434, 9713, 7684, 14472, 2, 25348, 17562, 37829, 16786, 3721
OFFSET
1,2
COMMENTS
a(n) = 2 if and only if n is a prime.
FORMULA
a(n) = A000041(n) - A327472(n). - Gus Wiseman, Sep 14 2019
EXAMPLE
a(6) counts these partitions: 6, 33, 321, 222, 111111.
From Gus Wiseman, Sep 14 2019: (Start)
The a(1) = 1 through a(10) = 8 partitions (A = 10):
1 2 3 4 5 6 7 8 9 A
11 111 22 11111 33 1111111 44 333 55
1111 222 2222 432 22222
321 3221 531 32221
111111 4211 111111111 33211
11111111 42211
52111
1111111111
(End)
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Mean[p]]], {n, 40}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A237984(n): return sum(1 for s, p in partitions(n, size=True) if not n%s and n//s in p) # Chai Wah Wu, Sep 21 2023
CROSSREFS
Cf. A238478.
The Heinz numbers of these partitions are A327473.
A similar sequence for subsets is A065795.
Dominated by A067538.
The strict case is A240850.
Partitions without their mean are A327472.
Sequence in context: A164896 A298422 A304716 * A118136 A356552 A258567
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved