OFFSET
0,3
FORMULA
a(n) = (-1)^n * n! * Sum_{k=0..n} 2^k * binomial((n-k)/2,k)/(n-k)!.
D-finite with recurrence a(n) +2*(-n+3)*a(n-1) +2*(-3*n+10)*a(n-2) +6*(n-2)*a(n-3) -9*(n-3)^2*a(n-4) -27*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Dec 04 2023
MAPLE
A362165 := proc(n)
(-1)^n*n!*add(2^k * binomial((n-k)/2, k)/(n-k)!, k=0..n) ;
end proc:
seq(A362165(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*sqrt(1-2*x))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 10 2023
STATUS
approved