OFFSET
1,1
COMMENTS
Let p be a prime number of the form 3*153479820268467961^2*2^k + 1 with k > 0, then the multiplicative order of 2 modulo p is not of the form 2^(m+1), m >= 0. Hence, p does not divide any Fermat number F(m) = 2^(2^m) + 1.
MATHEMATICA
Select[Range[2, 10^4, 2], PrimeQ[3*153479820268467961^2*2^# + 1] &]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Arkadiusz Wesolowski, Mar 28 2023
STATUS
approved