login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090222
Array used for numerators of g.f.s for column sequences of array A090216 ((5,5)-Stirling2).
3
1, 600, 600, 648000, 200, 2592000, 1270080000, 25, 2871000, 13592880000, 4267468800000, 1, 1294920, 36462182400, 100221504768000, 23228686172160000, 284800, 38559024000, 551224880640000, 1056582600192000000
OFFSET
5,2
COMMENTS
The row length sequence for this array is A090223(k-5)+1= floor(4*(k-5)/5)+1, k>=5: [1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, ...].
The g.f. G(k,x) for the k-th column (with leading zeros) of array A090216 is given there. The recurrence is G(k,x) = x*sum(binomial(k-r,5-r)*fallfac(5,5-r)*G(k-r,x),r=1..5))/(1-fallfac(k,5)*x), k>=5, with inputs G(k,x)=0 for k=1,2,3,4 and G(5,x)=x/(1-5!*x); where fallfac(n,m) := A008279(n,m) (falling factorials with fallfac(n,0) := 1). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=5: recurrence for S_{5,5}(n,k).
FORMULA
a(k, n) from: sum(a(k, n)*x^n, n=0..kmax(k)) = G(k, x)* product(1-fallfac(p, 5)*x, p=5..k)/x^ceiling(k/5), k>=5, with G(k, x) defined from the recurrence given above and kmax(k) := floor(4*(k-5)/5)= A090223(k-5).
EXAMPLE
[1]; [600]; [648000,200]; [2592000,1270080000,25]; ...
G(6,x)/x^2 = 600/((1-5!*x)*(1-6*5*4*3*2*x)). kmax(6)=0, hence P(6,x)=a(6,0)=600; x^2 from x^ceiling(6/5).
CROSSREFS
Sequence in context: A261701 A362324 A172244 * A361900 A216058 A157918
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Dec 01 2003
STATUS
approved