OFFSET
1,2
COMMENTS
LINKS
Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Enumeration of Dyck paths with air pockets, arXiv:2202.06893 [cs.DM], 2022-2023.
Peter Luschny, Fibonacci meanders.
EXAMPLE
Triangle T(n, k) starts:
[ 1] 1;
[ 2] 2, 1;
[ 3] 3, 2, 1;
[ 4] 4, 6, 2, 1;
[ 5] 5, 16, 6, 2, 1;
[ 6] 6, 35, 20, 6, 2, 1;
[ 7] 7, 66, 65, 20, 6, 2, 1;
[ 8] 8, 112, 186, 70, 20, 6, 2, 1;
[ 9] 9, 176, 462, 246, 70, 20, 6, 2, 1;
[10] 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1;
[11] 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1;
[12] 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1.
.
T(4, k) counts Fibonacci meanders with central angle 180 degrees and length 8 that make k left turns. Written as binary strings (L = 1, R = 0):
k = 1: 11000000, 10010000, 10000100, 10000001;
k = 2: 11110000, 11100100, 11100001, 11010010, 11001001, 10100101;
k = 3: 11111100, 11111001;
k = 4: 11111111.
PROG
(SageMath) # using function 'FibonacciMeandersByLeftTurns' from A361681.
for n in range(1, 12):
print(FibonacciMeandersByLeftTurns(2, n))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 31 2023
STATUS
approved