OFFSET
1,2
COMMENTS
Odd bisection of A361891.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 5.
FORMULA
a(n) = 1/binomial(2*n-1,n-1) * Sum_{k = 0..n-1} ( (2*n - 2*k)/(2*n - k) * binomial(2*n-1,k) )^7 for n >= 1.
MAPLE
seq(add( ( binomial(2*n-1, k) - binomial(2*n-1, k-1) )^7/binomial(2*n-1, n-1), k = 0..n-1), n = 1..20);
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Peter Bala, Mar 30 2023
EXTENSIONS
Offset changed to 1 by Georg Fischer, Nov 20 2024
STATUS
approved