login
A360506
Read A360505(n) as if it were a base-3 string and write it in base 10.
3
1, 7, 34, 358, 4003, 43369, 456712, 4708240, 47754961, 1339156591, 39693785002, 1169411930926, 34213667699203, 995038950807565, 28790341783585180, 829295063367580492, 23793774263808446005, 680307709052882601259, 19390954850541496025998
OFFSET
1,2
COMMENTS
This has the same relationship to A360505 as A048435 does to A360502.
The primes in A048435 are in A360503. What are the primes in the present sequence?
Answer: The first primes are a(2) = 7, a(5) = 4003, a(13) = 34213667699203, a(57) and a(109). See A360507. - Rémy Sigrist, Feb 18 2023
FORMULA
a(n) = A028898(A360505(n)). - Rémy Sigrist, Feb 18 2023
EXAMPLE
A360505(4) = 111021 and 111021_3 = 358_10 = a(4).
PROG
(PARI) a(n) = fromdigits(concat([digits(k, 3) | k <- Vecrev([1..n])]), 3) \\ Rémy Sigrist, Feb 18 2023
(Python)
from sympy.ntheory import digits
def a(n): return int("".join("".join(map(str, digits(k, 3)[1:])) for k in range(n, 0, -1)), 3)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 19 2023
(Python) # faster version for initial segment of sequence
from sympy.ntheory import digits
from itertools import count, islice
def agen(s=""): yield from (int(s:="".join(map(str, digits(n, 3)[1:]))+s, 3) for n in count(1))
print(list(islice(agen(), 20))) # Michael S. Branicky, Feb 19 2023
(Python)
from itertools import count, islice
def A360506_gen(): # generator of terms
a, b, c = 3, 1, 0
for i in count(1):
if i >= a:
a *= 3
c += i*b
yield c
b *= a
A360506_list = list(islice(A360506_gen(), 30)) # Chai Wah Wu, Nov 08 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Feb 17 2023
EXTENSIONS
More terms from Rémy Sigrist, Feb 18 2023
STATUS
approved