login
A359508
a(n) = log_2(A359507(n) - 1).
4
0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2
OFFSET
1,5
COMMENTS
Conjecture: A359507(n) is always of the form 2^m + 1.
If log_2(A359507(n) - 1) is not an integer, then define a(n) = -1.
LINKS
FORMULA
a(n) = A000523(A359507(n)-1).
Conjecture:
a(1) = 0,
a(2) = 1,
a(3) = 1,
a(4k) = 1 for k > 0,
a(4k+1) = 2 for k > 0,
a(4k+2) = 1 for k > 0,
a(4k+3) = a(k) + 2 for k > 0.
Apparently, a(n) = abs(A378218(1+n)). [This holds at least up to n=65537] - Antti Karttunen, Nov 22 2024
PROG
(PARI)
A359506(n) = if(n==0, return (0), my (x=[n], y); for (m=n+1, oo, if (vecmin(y=[bitxor(v, m) | v<-x])==0, return (m), x=setunion(x, Set(y))))); \\ From A359506.
A359507(n) = (A359506(n)-n);
A359508(n) = (#digits(A359507(n)-1, 2)-1); \\ Antti Karttunen, Nov 22 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Peter Kagey, Jan 03 2023
EXTENSIONS
More terms from Antti Karttunen, Nov 22 2024
STATUS
approved