login
A359156
a(n) = 1 if the odd part of n is squarefree and the number of prime factors of n (with multiplicity) is even, otherwise 0.
5
1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0
OFFSET
1
COMMENTS
a(n) = 1 if A000265(n) is squarefree and A001222(n) is even, otherwise 0.
FORMULA
a(n) = A065043(n) * A353627(n).
a(n) = A353627(n) - A359158(n).
a(n) = [A355689(n) > 0], where [ ] is the Iverson bracket.
Sum_{k=1..n} a(k) ~ (4/Pi^2)*n. - Amiram Eldar, Jan 18 2023
MATHEMATICA
a[n_] := If[EvenQ[PrimeOmega[n]] && SquareFreeQ[n/2^IntegerExponent[n, 2]], 1, 0]; Array[a, 100] (* Amiram Eldar, Jan 18 2023 *)
PROG
(PARI) A359156(n) = ((0==(bigomega(n)%2))&&issquarefree(n>>valuation(n, 2)));
CROSSREFS
Characteristic function of A359157.
Sequence in context: A214264 A173858 A217586 * A352569 A101266 A260552
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 20 2022
STATUS
approved