login
A358366
Table read by rows. T(n, k) = [x^k] n! * Sum_{j=0..n} binomial(n*x, j).
0
1, 1, 1, 2, 2, 4, 6, 15, 0, 27, 24, 56, 176, -128, 256, 120, 470, 125, 3125, -3125, 3125, 720, 2664, 10944, -16200, 71280, -69984, 46656, 5040, 26796, 17836, 376957, -840350, 1882384, -1647086, 823543, 40320, 204672, 1022720, -2222080, 16257024, -34865152, 55050240, -41943040, 16777216
OFFSET
0,4
EXAMPLE
[n\k] 0 1 2 3 4 5 6 7 [Sum]
--------------------------------------------------------------------------
[0] 1; [1]
[1] 1, 1; [2]
[2] 2, 2, 4; [8]
[3] 6, 15, 0, 27; [48]
[4] 24, 56, 176, -128, 256; [384]
[5] 120, 470, 125, 3125, -3125, 3125; [3840]
[6] 720, 2664, 10944, -16200, 71280, -69984, 46656; [46080]
[7] 5040, 26796, 17836, 376957, -840350, 1882384, -1647086, 823543; [645120]
MAPLE
Trow := proc(n) expand(n!*add(binomial(n*x, j), j = 0..n));
seq(coeff(%, x, k), k=0..n) end: seq(print(Trow(n)), n = 0..8);
CROSSREFS
Cf. T(n, 0) = n! (A000142), T(n, n) = n^n (A000312), A000165 (row sums).
Sequence in context: A116637 A153961 A134041 * A069925 A357951 A227315
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Nov 12 2022
STATUS
approved