OFFSET
0,2
FORMULA
a(n) = (64*(2*n - 3)^2*a(n - 2) + 12*(4*n - 3)*a(n - 1)) / n^2.
G.f.: hypergeom([-1/2, -1/2], [1], -16*x)/(1 - 16*x).
a(n) ~ sqrt(Pi) * 2^(4*n + 5/2) / Gamma(1/4)^2. - Vaclav Kotesovec, Nov 14 2023
MAPLE
a := n -> 16^n*add((-1)^k*binomial(1/2, k)^2, k = 0..n):
seq(a(n), n = 0..18);
MATHEMATICA
a[n_] := 16^n * Sum[(-1)^k*Binomial[1/2, k]^2, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 12 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 12 2022
STATUS
approved