Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Oct 31 2022 15:24:16
%S 1,1,0,1,2,0,1,4,3,0,1,6,16,4,0,1,8,39,64,5,0,1,10,72,258,256,6,0,1,
%T 12,115,664,1719,1024,7,0,1,14,168,1360,6184,11496,4096,8,0,1,16,231,
%U 2424,16265,57888,77052,16384,9,0,1,18,304,3934,35400,195660,543544,517194,65536,10,0
%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j) * binomial(k*(n-j),n-j).
%F T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(k*n+1,j).
%F T(n,k) = Sum_{j=0..n} k^(n-j) * binomial((k-1)*n+j,j).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 0, 2, 4, 6, 8, 10, ...
%e 0, 3, 16, 39, 72, 115, ...
%e 0, 4, 64, 258, 664, 1360, ...
%e 0, 5, 256, 1719, 6184, 16265, ...
%e 0, 6, 1024, 11496, 57888, 195660, ...
%o (PARI) T(n, k) = sum(j=0, n, binomial(k*j, j)*binomial(k*(n-j), n-j));
%o (PARI) T(n, k) = sum(j=0, n, (k-1)^(n-j)*binomial(k*n+1, j));
%o (PARI) T(n, k) = sum(j=0, n, k^(n-j)*binomial((k-1)*n+j, j));
%Y Column k=0-7 give: A000007, A001477(n+1), A000302, A006256, A078995, A079678, A079679, A079563.
%Y Main diagonal gives A358145.
%Y Cf. A358146.
%K nonn,tabl
%O 0,5
%A _Seiichi Manyama_, Oct 31 2022