login
A357959
a(n) = 5*A005259(n-1) + 2*A005258(n).
7
11, 63, 659, 9727, 187511, 4304943, 109312739, 2941124607, 82033399631, 2345394917563, 68306797052879, 2018580243252847, 60368874298729631, 1823588997226603663, 55558079041172790659, 1705174802761490321407, 52672634815976274443711, 1636296942340074307669443
OFFSET
1,1
COMMENTS
Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 5 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2, and for all primes p >= 5.
These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. Cf. A357959.
There is also a product version of these conjectures:
3) the sequence {u(n): n >= 1} defined by u(n) = A005259(n-1)^5 * A005258(n)^6 also satisfies the congruences in 1) and 2) above. See A357960.
FORMULA
a(n) = 5*Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k)^2 + 2*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k).
a(n*p^r) == a(n*p^(r-1)) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.
EXAMPLE
Examples of supercongruences:
a(13) - a(1) = 60368874298729631 - 11 = (2^2)*3*5*(13^5)*131*20685869 == 0 (mod 13^5).
a(5^2) - a(5) = 51292638914356604042099497031437511 - 187511 = (2^4)*3*(5^10)* 37*72974432287*40526706713533 == 0 (mod 5^10).
MAPLE
seq( add( 5*binomial(n-1, k)^2*binomial(n+k-1, k)^2 + 2*binomial(n, k)^2* binomial(n+k, k), k = 0..n ), n = 1..20);
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 25 2022
STATUS
approved