login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357045
Lexicographically earliest sequence of distinct non-palindromic numbers (A029742) such that a(n)+a(n+1) is always a palindrome (A002113).
1
10, 12, 21, 23, 32, 34, 43, 45, 54, 47, 19, 14, 30, 25, 41, 36, 52, 49, 17, 16, 28, 27, 39, 38, 50, 51, 15, 18, 26, 29, 37, 40, 48, 53, 13, 20, 24, 31, 35, 42, 46, 65, 56, 75, 76, 85, 86, 95, 96, 106, 116, 126, 136, 146, 157, 105, 97, 64, 57, 74
OFFSET
1,1
COMMENTS
Conjecture: The sequence contains all non-palindromic numbers (A029742).
LINKS
Eric Angelini, Sums with palindromes, personal blog "Cinquante signes" on blogspot.com, and post to the math-fun list, Sep 12 2022
PROG
(PARI) A357045_first(n, U=[9], a=1)={vector(n, k, k=U[1]; until( is_A002113(a+k) && !is_A002113(k) && !setsearch(U, k), k++); U=setunion(U, [a=k]); while(#U>1 && U[2]==U[1]+1+is_A002113(U[1]+1), U=U[^1]); a)}
(Python)
from itertools import count, islice
def ispal(n): s = str(n); return s == s[::-1]
def agen():
aset, k, mink = {10}, 10, 12
while True:
an = k; yield an; aset.add(an); k = mink
while k in aset or ispal(k) or not ispal(an+k): k += 1
while mink in aset: mink += 1
print(list(islice(agen(), 60))) # Michael S. Branicky, Sep 14 2022
CROSSREFS
Cf. A029742 (non-palindromes), A002113 (palindromes), A357044 (palindromes with non-palindromic sum of neighbors).
Sequence in context: A215940 A368550 A337866 * A320170 A082927 A108965
KEYWORD
nonn,base
AUTHOR
Eric Angelini and M. F. Hasler, Sep 14 2022
STATUS
approved