login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356490
a(n) is the determinant of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n).
3
1, 2, -5, 12, -19, -22, 1143, -4284, 14265, -46726, -84405, 1306096, 32312445, 522174906, 4105967871, 5135940112, -642055973735, -2832632334858, 14310549077571, 380891148658140, 4888186898996125, -49513565563840210, 383405170118692791, -2517836083641473036, -3043377347606882055
OFFSET
0,2
COMMENTS
Conjecture: abs(a(n)) is prime only for n = 1, 2, and 4.
FORMULA
A350955(n) <= a(n) <= A350956(n).
EXAMPLE
For n = 1 the matrix M(1) is
2
with determinant a(1) = 2.
For n = 2 the matrix M(2) is
2, 3
3, 2
with determinant a(2) = -5.
For n = 3 the matrix M(3) is
2, 3, 5
3, 2, 3
5, 3, 2
with determinant a(3) = 12.
MAPLE
A356490 := proc(n)
local T, c ;
if n =0 then
return 1 ;
end if;
T := LinearAlgebra[ToeplitzMatrix]([seq(ithprime(c), c=1..n)], n, symmetric) ;
LinearAlgebra[Determinant](T) ;
end proc:
seq(A356490(n), n=0..15) ; # R. J. Mathar, Jan 31 2023
MATHEMATICA
k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Array[k, n]]; a[n_]:=Det[M[n]]; Join[{1}, Table[a[n], {n, 24}]]
PROG
(PARI) a(n) = matdet(apply(prime, matrix(n, n, i, j, abs(i-j)+1))); \\ Michel Marcus, Aug 12 2022
(Python)
from sympy import Matrix, prime
def A356490(n): return Matrix(n, n, [prime(abs(i-j)+1) for i in range(n) for j in range(n)]).det() # Chai Wah Wu, Aug 12 2022
CROSSREFS
Cf. A005843 (trace of M(n)), A309131 (k-superdiagonal sum of M(n)), A356483 (hafnian of M(2*n)), A356491 (permanent of M(n)).
Sequence in context: A085395 A041641 A131091 * A336462 A116728 A276478
KEYWORD
sign
AUTHOR
Stefano Spezia, Aug 09 2022
STATUS
approved