login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A302777(n/d) * a(d).
3

%I #16 Jul 20 2022 08:50:34

%S 1,-1,-1,0,-1,2,-1,1,0,2,-1,-1,-1,2,2,-2,-1,-1,-1,-1,2,2,-1,-2,0,2,1,

%T -1,-1,-6,-1,2,2,2,2,2,-1,2,2,-2,-1,-6,-1,-1,-1,2,-1,6,0,-1,2,-1,-1,

%U -2,2,-2,2,2,-1,6,-1,2,-1,0,2,-6,-1,-1,2,-6,-1,0,-1,2,-1,-1,2,-6,-1,6,-2,2,-1,6,2,2,2,-2,-1,6,2

%N a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A302777(n/d) * a(d).

%C Dirichlet inverse of function f(1) = 1, f(n) = A302777(n) for n > 1, which is the characteristic function of the union of {1} and "Fermi-Dirac primes", A050376.

%H Antti Karttunen, <a href="/A355827/b355827.txt">Table of n, a(n) for n = 1..16384</a>

%H Antti Karttunen, <a href="/A355827/a355827.txt">Data supplement: n, a(n) computed for n = 1..100000</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%t s[n_] := If[n > 1 && Length[(f = FactorInteger[n])] == 1 && (e = f[[;; , 2]]) == 2^IntegerExponent[e, 2], 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#] * a[#] &, # < n &]; Array[a, 100] (* _Amiram Eldar_, Jul 19 2022 *)

%o (PARI)

%o ispow2(n) = (n && !bitand(n,n-1));

%o A302777(n) = ispow2(isprimepower(n));

%o memoA355827 = Map();

%o A355827(n) = if(1==n,1,my(v); if(mapisdefined(memoA355827,n,&v), v, v = -sumdiv(n,d,if(d<n,A302777(n/d)*A355827(d),0)); mapput(memoA355827,n,v); (v)));

%Y Cf. A050376, A302777.

%Y Cf. also A355817.

%K sign

%O 1,6

%A _Antti Karttunen_, Jul 19 2022