login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355827
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A302777(n/d) * a(d).
3
1, -1, -1, 0, -1, 2, -1, 1, 0, 2, -1, -1, -1, 2, 2, -2, -1, -1, -1, -1, 2, 2, -1, -2, 0, 2, 1, -1, -1, -6, -1, 2, 2, 2, 2, 2, -1, 2, 2, -2, -1, -6, -1, -1, -1, 2, -1, 6, 0, -1, 2, -1, -1, -2, 2, -2, 2, 2, -1, 6, -1, 2, -1, 0, 2, -6, -1, -1, 2, -6, -1, 0, -1, 2, -1, -1, 2, -6, -1, 6, -2, 2, -1, 6, 2, 2, 2, -2, -1, 6, 2
OFFSET
1,6
COMMENTS
Dirichlet inverse of function f(1) = 1, f(n) = A302777(n) for n > 1, which is the characteristic function of the union of {1} and "Fermi-Dirac primes", A050376.
MATHEMATICA
s[n_] := If[n > 1 && Length[(f = FactorInteger[n])] == 1 && (e = f[[;; , 2]]) == 2^IntegerExponent[e, 2], 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#] * a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI)
ispow2(n) = (n && !bitand(n, n-1));
A302777(n) = ispow2(isprimepower(n));
memoA355827 = Map();
A355827(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355827, n, &v), v, v = -sumdiv(n, d, if(d<n, A302777(n/d)*A355827(d), 0)); mapput(memoA355827, n, v); (v)));
CROSSREFS
Cf. also A355817.
Sequence in context: A162642 A366246 A361205 * A139146 A340489 A277487
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 19 2022
STATUS
approved