login
A355752
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 + 1) / 2.
6
6, 369, 2820, 10815, 29538, 65901, 128544, 227835, 375870, 586473, 875196, 1259319, 1757850, 2391525, 3182808, 4155891, 5336694, 6752865, 8433780, 10410543, 12715986, 15384669, 18452880, 21958635, 25941678, 30443481, 35507244, 41177895, 47502090, 54528213, 62306376, 70888419, 80327910, 90680145, 102002148, 114352671, 127792194
OFFSET
1,1
COMMENTS
Numbers C > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference (C - D) == 3 (mod 6), C - D = 3 (2n - 1) for n > 1, and the difference between the positive cubes C^3 - D^3 is equal to a centered cube number, C^3 - D^3 = B^3 + (B+1)^3, with C > D > B > 0, and A > 0, A = 27*t^3 *(27*t^6+1)/4 with t = 2*n-1, and where A = A352759(n), B = A355751(n), C = a(n) (this sequence), and D = A355753(n).
There are infinitely many such numbers a(n) = C in this sequence.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
a(n)^3 - A355753(n)^3 = A355751(n)^3 + (A355751(n) + 1)^3 = A352759(n) and a(n) - A355753(n) = 3*(2*n - 1).
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 + 1) / 2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1728*(n - 2), with a(1) = 6, a(2) = 369 and a(3) = 2820.
a(n) can be extended for negative n such that a(-n) = a(n+1) - 3*(2*n + 1).
G.f.: -3*x*(2+113*x+345*x^2+115*x^3+x^4) / (x-1)^5 . - R. J. Mathar, Aug 03 2022
EXAMPLE
a(1) = 6 belongs to the sequence as 6^3 - 3^3 = 4^3 + 5^3 = 189 and 6 - 3 = 3 = 3 (2*1 - 1).
a(2) = 369 belongs to the sequence as 369^3 - 360^3 = 121^3 + 122^3 = 3587409 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 3*(2*3 - 1)*( 3*(2*3 - 1)^3 + 1) / 2 = 2820.
a(4) = 3*a(3) - 3*a(2) + a(1) + 1728*2 = 3*2820 - 3*369 + 6 + 1728*2 = 10815.
MAPLE
restart; for n to 20 do (1/2)* 3*(2*n - 1)*(3*(2*n - 1)^3+1); end do;
PROG
(PARI) a(n)=3*(2*n-1)*(3*(2*n-1)^3+1)/2 \\ Charles R Greathouse IV, Oct 21 2022
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jul 15 2022
STATUS
approved