login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352134
Numbers k such that the centered cube number k^3 + (k+1)^3 is equal to at least one other sum of two cubes.
18
3, 4, 9, 18, 32, 36, 46, 58, 107, 108, 121, 123, 163, 197, 235, 301, 393, 411, 438, 481, 490, 528, 562, 607, 633, 640, 804, 1090, 1111, 1128, 1293, 1374, 1436, 1517, 1524, 1538, 1543, 1698, 2018, 2047, 2361, 3032, 3152, 3280, 3321, 4131, 4995, 5092, 5659, 5687, 5700
OFFSET
1,1
COMMENTS
The centered cube number a(n)^3 + (a(n) + 1)^3 is equal to at least one other sum of two cubes: a(n)^3 + (a(n) + 1)^3 = b(n)^3 + c(n)^3 = d(n), with b(n) > a(n) and b(n) > |c(n)|, and where b(n)=A352135(n), c(n)=A352136(n) and d(n)=A352133(n).
A number k is a term iff t = k^3 + (k+1)^3 = (2*k + 1)*(k^2 + k + 1) has one or more divisors s < 2*k such that 12*t/s - 3*s^2 is a square. Each such divisor s is the sum of two integers (other than k and k+1) whose cubes sum to t. - Jon E. Schoenfield, Mar 09 2022
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..917 (terms 1..275 from Vladimir Pletser)
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
a(n)^3 + (a(n) + 1)^3 = A352135(n)^3 + A352136(n)^3 = A352133(n).
EXAMPLE
3 belongs to the sequence as 3^3 + 4^3 = 6^3 + (-5)^3 = 91.
From Jon E. Schoenfield, Mar 11 2022: (Start)
The table below lists the first 15 pairs of integers (b,c) such that b > c+1 and b^3 + c^3 is a centered cube number k^3 + (k+1)^3 = d.
Note that there are two pairs (b,c) for k=121 and two for k=163. For these and for all numbers k for which there is more than one pair (b,c), the pair with the smallest value of b is chosen as the one whose values (b,c) appear in A352135 and A352136, i.e., A352135(n) and A352136(n) are the values (b,c) in that pair whose value of b is smallest.
Thus, the 15 solutions listed in the table account for only the first 13 terms of this sequence and of A352133, A352135, and A352136.
.
n a(n)=k d(n) b(n) c(n)
-- ------ ------- ---- ----
1 3 91 6 -5
2 4 189 6 -3
3 9 1729 12 1
4 18 12691 28 -21
5 32 68705 41 -6
6 36 97309 46 -3
7 46 201159 151 -148
8 58 400491 90 -69
9 107 2484755 171 -136
10 108 2554741 181 -150
11 121 3587409 153 18 (153 < 369)
* 121 3587409 369 -360 ((b,c) omitted from A352135,A352136)
12 123 3767491 160 -69
13 163 8741691 206 -5 (206 < 254)
* 163 8741691 254 -197 ((b,c) omitted from A352135,A352136)
(End)
PROG
(Magma) a:=[]; for k in [1..5700] do t:=k^3+(k+1)^3; for s in Divisors(t) do if s gt 2*k then break; end if; if IsSquare(12*(t div s) - 3*s^2) then a[#a+1]:=k; break; end if; end for; end for; a; // Jon E. Schoenfield, Mar 09 2022
KEYWORD
nonn
AUTHOR
Vladimir Pletser, Mar 05 2022
EXTENSIONS
Missing terms inserted by Jon E. Schoenfield, Mar 09 2022
STATUS
approved