login
A355599
a(1) = 29. For n > 1, a(n) = smallest prime q such that q^(a(n-1)-1) == 1 (mod a(n-1)^2).
5
29, 41, 313, 1499, 941, 12011, 6287, 52301, 50077, 137743, 1274353, 46303409, 89018221, 687655393, 7462816891
OFFSET
1,1
COMMENTS
Is this overall an increasing sequence or does it enter a cycle?
The sequence decreases for the first time at n = 5.
PROG
(PARI) seq(start, terms) = my(x=start, i=1); print1(start, ", "); while(1, forprime(q=1, , if(Mod(q, x^2)^(x-1)==1, print1(q, ", "); x=q; i++; if(i >= terms, break({2}), break))))
seq(29, 20) \\ Print initial 20 terms of sequence
CROSSREFS
Row n = 10 of A249162.
Sequence in context: A106019 A084163 A181622 * A086149 A344515 A066502
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Jul 09 2022
STATUS
approved