login
A344515
Primes p such that 2^p-1 has exactly 3 distinct prime factors.
2
29, 43, 47, 53, 71, 73, 79, 179, 193, 211, 257, 277, 283, 311, 331, 349, 353, 389, 409, 443, 467, 499, 563, 577, 599, 613, 631, 643, 647, 683, 709, 751, 769, 829, 919, 941, 1039, 1103, 1117, 1123, 1171, 1193
OFFSET
1,1
COMMENTS
The corresponding Mersenne numbers are in A135977.
a(43) >= 1237.
The following primes are also terms of this sequence: 1301, 1303, 1327, 1459, 1531, 1559, 1907, 2311, 2383, 2887, 3041, 3547, 3833, 4127, 4507, 4871, 6883, 7673, 8233.
FORMULA
2^a(n) - 1 = A135977(n).
EXAMPLE
29 is a term since 2^29-1 = 536870911 = 233 * 1103 * 2089 has exactly 3 distinct prime factors.
MATHEMATICA
Select[Range[200], PrimeQ[#] && PrimeNu[2^# - 1] == 3 &]
CROSSREFS
Subsequence of A054723.
Sequence in context: A181622 A355599 A086149 * A066502 A125870 A076439
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, May 21 2021
STATUS
approved