login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355251
Decimal expansion of the geometric integral of the Riemann zeta function from 1 to infinity.
1
6, 0, 3, 4, 9, 6, 4, 4, 1, 8, 2, 2, 3, 1, 3, 4, 8, 3, 4, 7, 0, 1, 1, 0, 0, 6, 8, 0, 5, 1, 7, 0, 2, 7, 1, 8, 9, 6, 0, 2, 3, 0, 9, 6, 3, 6, 4, 9, 4, 7, 8, 4, 3, 6, 0, 9, 6, 4, 4, 0, 4, 2, 0, 2, 1, 5, 4, 4, 8, 7, 4, 0, 2, 9, 0, 7, 4, 7, 0, 1, 0, 1, 3, 3, 7, 0, 2
OFFSET
1,1
COMMENTS
The geometric integral of a function, f(x), from a to b is defined as lim_{dx->0} Product_{i=1..n} f(x_i)^dx, where n = (b - a)/dx and x_i is a number on the interval [a + dx*(i-1), a + dx*i].
The geometric integral can be shown to be equivalent to exp(Integral_{a..b} log(f(x)) dx).
FORMULA
Equals exp(Integral_{s=1..oo} log(zeta(s)) ds) = e^A188157.
EXAMPLE
Equals 6.03496441822313483470110068051702718960230963649478436096...
PROG
(PARI) exp(intnum(s=1, [oo, log(2)], log(zeta(s))))
CROSSREFS
Sequence in context: A087014 A176906 A293255 * A094174 A105873 A011380
KEYWORD
nonn,cons
AUTHOR
Iain Fox, Jun 26 2022
STATUS
approved