OFFSET
1,1
COMMENTS
The geometric integral of a function, f(x), from a to b is defined as lim_{dx->0} Product_{i=1..n} f(x_i)^dx, where n = (b - a)/dx and x_i is a number on the interval [a + dx*(i-1), a + dx*i].
The geometric integral can be shown to be equivalent to exp(Integral_{a..b} log(f(x)) dx).
LINKS
Iain Fox, Table of n, a(n) for n = 1..2000
Wikipedia, Product integral
FORMULA
Equals exp(Integral_{s=1..oo} log(zeta(s)) ds) = e^A188157.
EXAMPLE
Equals 6.03496441822313483470110068051702718960230963649478436096...
PROG
(PARI) exp(intnum(s=1, [oo, log(2)], log(zeta(s))))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Iain Fox, Jun 26 2022
STATUS
approved