login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355249
Maximal GCD of three positive integers with sum n.
8
1, 1, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 5, 4, 1, 6, 1, 5, 7, 2, 1, 8, 5, 2, 9, 7, 1, 10, 1, 8, 11, 2, 7, 12, 1, 2, 13, 10, 1, 14, 1, 11, 15, 2, 1, 16, 7, 10, 17, 13, 1, 18, 11, 14, 19, 2, 1, 20, 1, 2, 21, 16, 13, 22, 1, 17, 23, 14, 1, 24, 1, 2, 25, 19, 11, 26, 1, 20, 27, 2, 1, 28
OFFSET
3,4
FORMULA
From Bernard Schott, Jun 27 2022: (Start)
a(3n) = n for n >= 1.
a(p) = 1 for p prime >= 3. (End)
MATHEMATICA
a[n_] := GCD @@@ IntegerPartitions[n, {3}] // Max;
Table[a[n], {n, 3, 100}] (* Jean-François Alcover, Sep 21 2022 *)
PROG
(Python)
from math import gcd
def a(n): return max(gcd(i, j, n-i-j) for i in range(1, n//3+1) for j in range(i, n//3+1))
print([a(n) for n in range(3, 85)]) # Michael S. Branicky, Jun 26 2022
CROSSREFS
Maximal GCD of k positive integers with sum n for k = 2..10: A032742 (k=2,n>=2), this sequence (k=3), A355319 (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), A354598 (k=8), A354599 (k=9), A354601 (k=10).
Sequence in context: A134388 A055095 A366770 * A337618 A048685 A364663
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 25 2022
STATUS
approved