login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355210
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1)).
2
1, 2, 10, 106, 2234, 90570, 6986490, 1026623306, 289475035770, 158101579596106, 168768027732007674, 354715566244066506058, 1476006372586517922472826, 12205618234758923312503183690, 201082085503026084194089831880698
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; a(n+1) = Sum_{k=1..n} 2^k * Stirling2(n,k) * a(k).
PROG
(PARI) a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, 2^j*stirling(i, j, 2)*v[j])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 24 2022
STATUS
approved