login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306064
G.f. A(x) satisfies: A(x) = x + x*A(x + A(x)).
0
1, 2, 10, 106, 2130, 79442, 5581914, 754371386, 199193444258, 103781218984098, 107308976428238250, 220948088846408617994, 907652841888542054277618, 7447285848965361047618906866, 122120561639979483596993367427066, 4003478037366868501269046319075211994, 262435985468992467742766325045697308601154, 34402470626949826173994511431148770576433889602
OFFSET
1,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = x + x*A(x + A(x)).
(2) A(x) = Sum_{n>=0} Product_{k=0..n} B^k(x), where B(x) = x + A(x) and B^n(x) denotes the n-th iteration of B(x).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 106*x^4 + 2130*x^5 + 79442*x^6 + 5581914*x^7 + 754371386*x^8 + 199193444258*x^9 + 103781218984098*x^10 + ...
such that A(x) = x + x*A(x + A(x)).
RELATED SERIES.
Define B(x) = x + A(x), then
A(x) = x + x*B(x) + x*B(x)*B(B(x)) + x*B(x)*B(B(x))*B(B(B(x))) + x*B(x)*B(B(x))*B(B(B(x)))*B(B(B(B(x)))) + ...
where
B(x) = 2*(x + x^2 + 5*x^3 + 53*x^4 + 1065*x^5 + 39721*x^6 + ...);
B(B(x)) = 4*(x + 3*x^2 + 29*x^3 + 559*x^4 + 20393*x^5 + 1415339*x^6 + ...);
B(B(B(x))) = 8*(x + 7*x^2 + 133*x^3 + 4939*x^4 + 348025*x^5 + ...);
B(B(B(B(x)))) = 16*(x + 15*x^2 + 565*x^3 + 41315*x^4 + 5738713*x^5 + ...);
B(B(B(B(B(x))))) = 32*(x + 31*x^2 + 2325*x^3 + 337683*x^4 + 93186713*x^5 + ...);
etc.
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = x + x*subst(A, x, x + A + x*O(x^n))); polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A049538 A217901 A127728 * A355210 A185396 A003222
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2018
STATUS
approved