login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354831
Primes of the form 3^k + 5^k + 7^k + 11^k + 13^k.
1
5, 373, 46309, 6732373, 26450599458469, 4317810550653973, 15647143198792684919908583741989, 6864681654384231304317569259724531213945845885866391974437116993829, 5599548608682504162062596274137068329320798013420534505888549721133699842789
OFFSET
1,1
EXAMPLE
3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373, which is a prime.
3^4 + 5^4 + 7^4 + 11^4 + 13^4 = 46309, which is a prime.
MATHEMATICA
Select[Table[3^n + 5^n + 7^n + 11^n + 13^n, {n, 0, 1000}], PrimeQ]
PROG
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): yield from (p for p in (3**k + 5**k + 7**k + 11**k + 13**k for k in count(0)) if isprime(p))
print(list(islice(agen(), 9))) # Michael S. Branicky, Jun 07 2022
CROSSREFS
A352393 gives the corresponding exponents.
Cf. A166241.
Sequence in context: A160193 A215437 A098038 * A072172 A278364 A214008
KEYWORD
nonn
AUTHOR
Hemjyoti Nath, Jun 07 2022
STATUS
approved