OFFSET
0,1
COMMENTS
J. Machin (died 1751) used Pi/4 = 4*Sum_{n=0..inf} (-1)^n/((2*n+1)*5^(2*n+1)) - Sum_{n=0..inf} (-1)^n/((2*n+1)*239^(2*n+1)) to calculate Pi to 100 decimal places.
REFERENCES
H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73
LINKS
Colin Barker, Table of n, a(n) for n = 0..700
Index entries for linear recurrences with constant coefficients, signature (50,-625).
FORMULA
From Colin Barker, Aug 25 2016: (Start)
a(n) = 50*a(n-1) - 625*a(n-2) for n>1.
G.f.: 5*(1+25*x)/(1-25*x)^2.
(End)
From Ilya Gutkovskiy, Aug 25 2016: (Start)
E.g.f.: 5*(1 + 50*x)*exp(25*x).
Sum_{n>=0} 1/a(n) = arctanh(1/5) = 0.2027325540540821...
Sum_{n>=0} (-1)^n/a(n) = arctan(1/5) = A105532 (End)
MAPLE
seq((2*n+1)*5^(2*n+1), n=0..20); # G. C. Greubel, Aug 26 2019
MATHEMATICA
Table[(2*n+1)*5^(2*n+1), {n, 0, 20}] (* G. C. Greubel, Aug 26 2019 *)
PROG
(PARI) Vec(5*(1+25*x)/(1-25*x)^2 + O(x^20)) \\ Colin Barker, Aug 25 2016
(PARI) vector(20, n, (2*n-1)*5^(2*n-1) ) \\ G. C. Greubel, Aug 26 2019
(Magma) [(2*n+1)*5^(2*n+1): n in [0..20]]; // G. C. Greubel, Aug 26 2019
(Sage) [(2*n+1)*5^(2*n+1) for n in (0..20)] # G. C. Greubel, Aug 26 2019
(GAP) List([0..20], n-> (2*n+1)*5^(2*n+1)); # G. C. Greubel, Aug 26 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 30 2002
STATUS
approved