login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072172
a(n) = (2*n+1)*5^(2*n+1).
5
5, 375, 15625, 546875, 17578125, 537109375, 15869140625, 457763671875, 12969970703125, 362396240234375, 10013580322265625, 274181365966796875, 7450580596923828125, 201165676116943359375, 5401670932769775390625, 144354999065399169921875
OFFSET
0,1
COMMENTS
J. Machin (died 1751) used Pi/4 = 4*Sum_{n=0..inf} (-1)^n/((2*n+1)*5^(2*n+1)) - Sum_{n=0..inf} (-1)^n/((2*n+1)*239^(2*n+1)) to calculate Pi to 100 decimal places.
REFERENCES
H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73
FORMULA
From Colin Barker, Aug 25 2016: (Start)
a(n) = 50*a(n-1) - 625*a(n-2) for n>1.
G.f.: 5*(1+25*x)/(1-25*x)^2.
(End)
From Ilya Gutkovskiy, Aug 25 2016: (Start)
E.g.f.: 5*(1 + 50*x)*exp(25*x).
Sum_{n>=0} 1/a(n) = arctanh(1/5) = 0.2027325540540821...
Sum_{n>=0} (-1)^n/a(n) = arctan(1/5) = A105532 (End)
MAPLE
seq((2*n+1)*5^(2*n+1), n=0..20); # G. C. Greubel, Aug 26 2019
MATHEMATICA
Table[(2*n+1)*5^(2*n+1), {n, 0, 20}] (* G. C. Greubel, Aug 26 2019 *)
PROG
(PARI) Vec(5*(1+25*x)/(1-25*x)^2 + O(x^20)) \\ Colin Barker, Aug 25 2016
(PARI) vector(20, n, (2*n-1)*5^(2*n-1) ) \\ G. C. Greubel, Aug 26 2019
(Magma) [(2*n+1)*5^(2*n+1): n in [0..20]]; // G. C. Greubel, Aug 26 2019
(Sage) [(2*n+1)*5^(2*n+1) for n in (0..20)] # G. C. Greubel, Aug 26 2019
(GAP) List([0..20], n-> (2*n+1)*5^(2*n+1)); # G. C. Greubel, Aug 26 2019
CROSSREFS
Cf. A072173.
Cf. A157332. - Jaume Oliver Lafont, Mar 03 2009
Sequence in context: A215437 A098038 A354831 * A278364 A214008 A208094
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 30 2002
STATUS
approved