login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354099
The 3-adic valuation of Euler totient function phi.
4
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 2, 0, 2, 1, 1, 1, 0, 3, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1
OFFSET
1,19
LINKS
FORMULA
a(n) = A007949(A000010(n)).
Additive with a(p^e) = A007949((p-1)*p^(e-1)).
MATHEMATICA
a[n_] := IntegerExponent[EulerPhi[n], 3]; Array[a, 100] (* Amiram Eldar, May 17 2022 *)
PROG
(PARI) A354099(n) = valuation(eulerphi(n), 3);
(PARI) A354099(n) = { my(f=factor(n)); sum(k=1, #f~, valuation((f[k, 1]-1)*(f[k, 1]^(f[k, 2]-1)), 3)); }; \\ Demonstrates the additivity.
CROSSREFS
Cf. A088232 (positions of zeros), A066498 (of terms > 0).
Cf. also A354100.
Sequence in context: A123758 A231642 A288318 * A219483 A239927 A069846
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 17 2022
STATUS
approved