login
A353937
Smallest b > 1 such that b^(p-1) == 1 (mod p^4) for p = prime(n).
8
17, 80, 182, 1047, 1963, 239, 4260, 2819, 19214, 2463, 15714, 51344, 20677, 3038, 224444, 189323, 11550, 397575, 201305, 15384, 840838, 1372873, 1576656, 278454, 1721322, 48072, 281007, 119551, 252595, 1001934, 3489507, 2489004, 598987, 3082551, 6136759, 3928984
OFFSET
1,1
MATHEMATICA
a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^4] != 1, b++]; b]; Array[a, 20] (* Amiram Eldar, May 12 2022 *)
PROG
(PARI) a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^4)^(p-1)==1, return(b)))
(Python)
from sympy import prime
from sympy.ntheory.residue_ntheory import nthroot_mod
def A353937(n): return 2**4+1 if n == 1 else int(nthroot_mod(1, (p:= prime(n))-1, p**4, True)[1]) # Chai Wah Wu, May 17 2022
CROSSREFS
Row k = 4 of A257833.
Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353938 (k=5), A353939 (k=6), A353940 (k=7), A353941 (k=8), A353942 (k=9), A353943 (k=10).
Sequence in context: A036429 A126404 A142021 * A172045 A338549 A060934
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 12 2022
STATUS
approved