login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353321
a(n) = floor(1/erfc(n/sqrt(2))).
0
1, 3, 21, 370, 15787, 1744277, 506797345, 390682215445, 803734397655347, 4430313100526836692, 65618063552490194383194, 2616897361902846669558232537, 281455127862349591601857362987343, 81737217988908649002650313009555641846, 64155724364921456082725604130103414484969173
OFFSET
0,2
COMMENTS
a(n) is the residual (inverted) of the standard normal distribution in two-sided range of n sigma.
The 1/sqrt(2) factor appears in the argument of the erfc function because the standard normal cumulative distribution function has integrand exp(-(1/2)(x/sigma)^2).
The n=5 value, a(5)=1744277, appeared in discussions of the 5-sigma (two-sided probability) discovery of the Higgs boson at CERN (see articles in Links).
FORMULA
Straightforward asymptotics of erfc (e.g., see Abramowitz and Stegun) gives leading order as a(n) ~ sqrt(Pi/2)*n*exp((1/2)*n^2).
EXAMPLE
For n=2, a(2)=21 corresponds roughly to the statement that 95.5% of normally distributed measurements fall into the range of two sigma (plus and minus), since 1/21 = 1-0.955 (approximately). Nearest-integer version (A275366) is always more accurate (e.g., a(2)=22).
MATHEMATICA
Table[Floor[1/Erfc[n/Sqrt[2]]], {n, 1, 16}]
CROSSREFS
Cf. A275366 (rounded).
Sequence in context: A320949 A361056 A101389 * A108716 A358950 A271570
KEYWORD
nonn
AUTHOR
Greg Huber, Jul 04 2022
STATUS
approved