login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320949
G.f. A(x) satisfies: Sum_{n>=0} (1+x)^(n^2) / (1 + A(x))^(n+1) = 1.
1
1, 3, 21, 360, 9957, 374253, 17525043, 974215107, 62408814861, 4516276087767, 363954839947020, 32309808570484494, 3132592962836443359, 329373550369411338717, 37333941689722714789794, 4538664786712251729910968, 589148225684126151109083696, 81336502478379195711058521051, 11901242590779904151733826269744, 1839862821593669244253225972075464, 299668244116570657639682105216317053
OFFSET
0,2
COMMENTS
Compare to the identity: Sum_{n>=0} G(x)^n / (1 + G(x))^(n+1) = 1, which holds for all G(x) such that G(0) is finite.
LINKS
FORMULA
a(n) = 0 (mod 3) for n > 0 (conjecture).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 21*x^2 + 360*x^3 + 9957*x^4 + 374253*x^5 + 17525043*x^6 + 974215107*x^7 + 62408814861*x^8 + 4516276087767*x^9 + 363954839947020*x^10 + ...
such that
1 = 1/(1 + A(x)) + (1+x)/(1 + A(x))^2 + (1+x)^4/(1 + A(x))^3 + (1+x)^9/(1 + A(x))^4 + (1+x)^16/(1 + A(x))^5 + (1+x)^25/(1 + A(x))^6 + (1+x)^36/(1 + A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + A(x)/(1 + A(x))^2 + A(x)^2/(1 + A(x))^3 + A(x)^3(1 + A(x))^4 + A(x)^4/(1 + A(x))^5 + A(x)^5/(1 + A(x))^6 + A(x)^6/(1 + A(x))^7 + ...
a(n) appears to be divisible by 3 for n > 0:
(A(x) - 1)/3 = x + 7*x^2 + 120*x^3 + 3319*x^4 + 124751*x^5 + 5841681*x^6 + 324738369*x^7 + 20802938287*x^8 + 1505425362589*x^9 + 121318279982340*x^10 + ...
PROG
(PARI)
\p120
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = round(polcoeff(sum(n=0, 600, (1+x +x*O(x^#A))^(n^2) / (1 + Ser(A))^(n+1)*1. ), #A-1))); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A052445 A351130 A186271 * A361056 A101389 A353321
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 13 2018
STATUS
approved