login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353258
Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (3 * j - x).
3
1, 0, -1, -3, -17, -153, -1846, -27828, -503000, -10599873, -255143728, -6906078108, -207627211745, -6864486246225, -247526246562328, -9667515778323735, -406560434763167342, -18316445888374834635, -880110629723965618045, -44928348211160605056537
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * 3^(n-2*k) * |Stirling1(n-k,k)|.
MATHEMATICA
a[n_] := Sum[(-1)^k * 3^(n - 2*k) * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 09 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, 3*j-x)))
(PARI) a(n) = sum(k=0, n\2, (-1)^k*3^(n-2*k)*abs(stirling(n-k, k, 1)));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 08 2022
STATUS
approved