login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208832
G.f.: 1/(1-x) = Sum_{n>=0} a(n) * x^n * Product_{k=1..n} (1 - k*x)/(1 + k*x).
1
1, 1, 3, 17, 153, 1961, 33267, 709937, 18375001, 561358441, 19825203355, 796240555449, 35891569819217, 1796230428709665, 98908294526888507, 5946867742763879145, 387872935717894524737, 27288493956110862779089, 2060691818131992283884307, 166303287155431671466946881
OFFSET
0,3
EXAMPLE
G.f.: 1/(1-x) = 1 + 1*x*(1-x)/(1+x) + 3*x^2*(1-x)*(1-2*x)/((1+x)*(1+2*x)) + 17*x^3*(1-x)*(1-2*x)*(1-3*x)/((1+x)*(1+2*x)*(1+3*x)) + 153*x^4*(1-x)*(1-2*x)*(1-3*x)*(1-4*x)/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
PROG
(PARI) {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k*prod(j=1, k, (1-j*x)/(1+j*x+x*O(x^n)))), n))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A208833.
Sequence in context: A364630 A318987 A353258 * A377810 A135751 A368444
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 01 2012
STATUS
approved