login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352868
Expansion of e.g.f. exp(Sum_{k>=1} mu(k) * x^k), where mu() is the Moebius function (A008683).
1
1, 1, -1, -11, -23, -19, 991, 4369, -11311, -356903, 5389471, 7875341, -430708871, -16579950971, 45417621887, 3629980647721, 93982540029601, -1077931879771471, -29167938898699841, -486520057714400603, 7973931691642326281, 205214099791890382621
OFFSET
0,4
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * mu(k) * a(n-k)/(n-k)!.
E.g.f. A(x) satisfies Product_{n>=1} A(x^n) = exp(x). - Paul D. Hanna, Feb 29 2024
EXAMPLE
E.g.f.: A(x) = 1 + x - x^2/2! - 11*x^3/3! - 23*x^4/4! - 19*x^5/5! + 991*x^6/6! + 4369*x^7/7! - 11311*x^8/8! - 356903*x^9/9! + 5389471*x^10/10! + ...
where A(x) = exp(x - x^2 - x^3 - x^5 + x^6 - x^7 + ... + mu(n)*x^n +....);
thus, exp(x) = A(x) * A(x^2) * A(x^3) * ... * A(x^n) * ...
MATHEMATICA
nmax = 20; A[_] = 1; Do[A[x_] = Exp[x]/Product[A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]*Range[0, nmax]! (* Vaclav Kotesovec, Mar 01 2024 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, moebius(k)*x^k))))
(PARI) a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*moebius(k)*a(n-k)/(n-k)!));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 06 2022
STATUS
approved