login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119815
Integer a(n) produces the least positive integer coefficient of x^n in the n-th iteration of g.f. A(x) where A(0)=0.
5
1, 1, -1, 1, 1, -11, 23, -20, 731, -4860, -91205, 138329, 24813133, 222203538, -11857627480, -340590475934, 7798573417057, 602467423292955, -4252676907049394, -1469602631093521547, -14928401886412967891, 4982240895059491727005, 167923794808862463264206
OFFSET
1,6
EXAMPLE
The iterated iterations of g.f. A(x) begin:
A(x) = (1)x + x^2 - x^3 + x^4 + x^5 - 11x^6 + 23x^7 - 20x^8 + 731x^9+..
A(A(x)) = x + (2)x^2 - 2x^4 + 6x^5 - 8x^6 - 50x^7 + 78x^8 + 1688x^9+...
A(A(A(x))) = x + 3x^2 + (3)x^3 - 3x^4 - x^5 + 17x^6 - 81x^7 -370x^8+...
A(A(A(A(x)))) = x + 4x^2 + 8x^3 + (4)x^4 - 12x^5 + 4x^6 + 12x^7 +...
A(A(A(A(A(x))))) = x + 5x^2 + 15x^3 + 25x^4 + (5)x^5 - 55x^6 -33x^7+...
A(A(A(A(A(A(x)))))) = x + 6x^2 + 24x^3 + 66x^4 + 106x^5 + (4)x^6 +...
Coefficients [x^n] of n-th self-composition of A(x) forms A119816:
[1,2,3,4,5,4,7,8,3,9,11,4,13,11,14,8,17,4,19,4,1,4,23,24,5,17,27,...].
PROG
(PARI) {a(n)=local(F=x+x^2+sum(k=3, n-1, a(k)*x^k), G=x+x*O(x^n)); if(n<1, 0, if(n<=2, 1, for(k=1, n, G=subst(F, x, G)); return((n-polcoeff(G, n, x)) )))}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 31 2006
STATUS
approved