login
A352822
Number of fixed points y(i) = i, where y is the weakly increasing sequence of prime indices of n.
28
0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0
OFFSET
1,6
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
a(n) = A001222(n) - A352823(n). - Antti Karttunen, Apr 11 2022
EXAMPLE
The prime indices of 6500 are {1,1,3,3,3,6} with fixed points at positions {1,3,6}, so a(6500) = 3.
MAPLE
f:= proc(n) local F, J, t;
F:= sort(ifactors(n)[2], (s, t) -> s[1]<t[1]);
J:= map(t -> numtheory:-pi(t[1])$t[2], F);
nops(select(t -> J[t]=t, [$1..nops(J)]));
end proc:
map(f, [$1..200]); # Robert Israel, Apr 11 2023
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Table[pq[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]], {n, 100}]
PROG
(PARI) A352822(n) = { my(f=factor(n), i=0, c=0); for(k=1, #f~, while(f[k, 2], f[k, 2]--; i++; c += (i==primepi(f[k, 1])))); (c); }; \\ Antti Karttunen, Apr 11 2022
CROSSREFS
* = unproved
Positions of first appearances are A002110.
The triangle version is A238352.
Positions of 0's are A352830, counted by A238394.
Positions of 1's are A352831, counted by A352832.
A version for compositions is A352512, complement A352513, triangle A238349.
The complement is A352823.
The reverse version is A352824, complement A352825.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A115720 and A115994 count partitions by their Durfee square.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
Sequence in context: A357924 A351563 A362983 * A090418 A363877 A322452
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 05 2022
EXTENSIONS
Data section extended up to 105 terms by Antti Karttunen, Apr 11 2022
STATUS
approved