login
A351247
a(n) = n^7 * Sum_{p|n, p prime} 1/p^7.
11
0, 1, 1, 128, 1, 2315, 1, 16384, 2187, 78253, 1, 296320, 1, 823671, 80312, 2097152, 1, 5062905, 1, 10016384, 825730, 19487299, 1, 37928960, 78125, 62748645, 4782969, 105429888, 1, 181139311, 1, 268435456, 19489358, 410338801, 901668, 648051840, 1, 893871867, 62750704
OFFSET
1,4
LINKS
FORMULA
a(A000040(n)) = 1.
EXAMPLE
a(6) = 2315; a(6) = 6^7 * Sum_{p|6, p prime} 1/p^7 = 279936 * (1/2^7 + 1/3^7) = 2315.
CROSSREFS
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), this sequence (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).
Cf. A000040.
Sequence in context: A368676 A035880 A010369 * A303324 A121374 A336774
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved