OFFSET
1,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(A000040(n)) = 1.
G.f.: Sum_{k>=1} x^prime(k) * (1 + 11*x^prime(k) + 11*x^(2*prime(k)) + x^(3*prime(k))) / (1 - x^prime(k))^5. - Ilya Gutkovskiy, Feb 05 2022
Dirichlet g.f.: zeta(s-4)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^4/n^s) Sum_{p|n} 1/p^4. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^4*(p*j)^(s-4)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-4) = zeta(s-4)*primezeta(s). The result generalizes to higher powers of p. - Michael Shamos, Mar 02 2023
Sum_{k=1..n} a(k) ~ A085965 * n^5/5. - Vaclav Kotesovec, Mar 03 2023
EXAMPLE
a(6) = 97; a(6) = 6^4 * Sum_{p|6, p prime} 1/p^4 = 1296 * (1/2^4 + 1/3^4) = 97.
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved