login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350648
Sum over all partitions of [n] of the number of blocks containing their own index when blocks are ordered with decreasing largest elements.
4
0, 1, 1, 5, 11, 48, 173, 795, 3719, 19343, 106563, 628508, 3923602, 25875858, 179468739, 1305268102, 9925892324, 78728325373, 649856661196, 5571421770478, 49521735963376, 455616186779543, 4332419124871058, 42520560822961111, 430191406640367880
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=1..ceiling(n/2)} k * A350647(n,k).
EXAMPLE
a(3) = 5 = 3*1 + 2*2: 321, 3|21, 3|2|1; 31|2.
a(4) = 11 = 7*1 + 2*2: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2; 431|2, 41|32.
MAPLE
b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p->p+
[0, `if`(j=n, p[1], 0)])(b(n-1, max(j, m))), j=1..m+1))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..30);
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[j == n, p[[1]], 0]}][b[n - 1, Max[j, m]]], {j, 1, m + 1}]];
a[n_] := b[n, 0][[2]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A149513 A327494 A097743 * A176609 A041213 A142238
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 09 2022
STATUS
approved